
• At the end of each trial, the correct category was revealed and the subjects 
recorded the accuracy of their category guess. 
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Seasonal Influenza infects an average 30 million people in 
the United States every year1, overburdening hospitals 
during weeks of peak incidence. Named by the CDC as an 
important tool to fight the damaging effects of these 
epidemics, accurate forecasts of influenza and influenza like 
illness (ILI) forewarn public health officials about when, 
and where, seasonal influenza outbreaks will hit hardest.

To protect the adaptive ensemble framework from relying 
too heavily on recent, revision-prone ILI data, we 
developed a Bayesian model that uses a time-dependent 
prior to regularize ensemble weights.

Every week throughout the season, for 10 different 
reporting regions and a national average, the CDC publishes 
surveillance data on influenza-like illness (ILI). ILI is 
defined as the percentage of patients presenting with a 
fever~(greater than 100F) plus cough or sore throat with no 
known cause other than influenza.

Our adaptive ensemble can forecast from revision-prone, 
noisy ILI data by relying on a prior. We show this adaptive 
algorithm outperforms an Equal-weight ensemble and 
shows similar, or better performance against a static 
ensemble.

Extending an existing ensemble implementation2, we 
developed a new method for combining component models 
that relies on recently observed, in-season data to adaptively 
estimate a convex combination of models.
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The FluSight Network (FSN) is a collaborative group of 
influenza forecasters, using historical performance of 
models to build ensemble forecasts.

Multiple models forecast Influenza
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Assume ILI data is generated by a 
mixture of component models

For every epiweek, add a hidden 
variable that indicates which model 
generated the tth ILI value 
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#MAP is a convex combination btw prior and MLE

↵(t) =
⇢N(t)

M

r(m, t) = responsibility ⇢ = Percent towards equal weighting

Variational algorithm 
includes EM as a 
special case

Able to generate quick forecasts from sparse or noisy data, 
an adaptive ensemble could serve as a valuable tool to 
public health officials, needing to make informed 
decisions under uncertainty
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