Adaptively stacked ensembles for influenza forecasting with incomplete data Thomas C. McAndrew, Nicholas G. Reich University of Massachusetts at Amherst, Dept. of Biostatistics and Epidemiology

Introduction

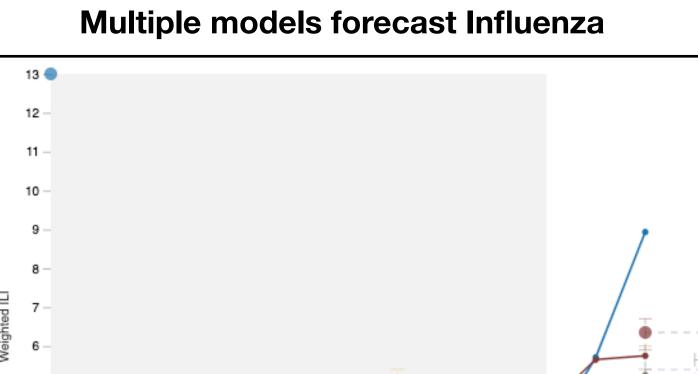
Seasonal Influenza infects an average 30 million people in the United States every year¹, overburdening hospitals during weeks of peak incidence. Named by the CDC as an important tool to fight the damaging effects of these epidemics, <u>accurate forecasts of influenza and influenza like</u> <u>illness (ILI)</u> forewarn public health officials about when, and where, seasonal influenza outbreaks will hit hardest.

Extending an existing ensemble implementation², we developed a new method for combining component models that relies on recently observed, in-season data to <u>adaptively</u> <u>estimate a convex combination of models.</u>

To protect the adaptive ensemble framework from relying too heavily on recent, revision-prone ILI data, we developed a Bayesian model that uses a time-dependent prior to regularize ensemble weights.

Data

Every week throughout the season, for 10 different reporting regions and a national average, the CDC publishes surveillance <u>data on influenza-like illness</u> (ILI). ILI is defined as the percentage of patients presenting with a fever~(greater than 100F) plus cough or sore throat with no known cause other than influenza.



21 Component model forecasts

Real-time forecasts from 2010/2011 to present

The FluSight Network (FSN) is a collaborative group of influenza forecasters, using historical performance of models to build ensemble forecasts.

Methods

Assume ILI data is generated by a mixture of component models

$$p(\text{ILI}_t|\pi) = \sum_{m=1}^{\#\text{models}} \pi(m)f(m, \text{ILI}_t)$$
 For $\frac{1}{2}$

complete likelihood $p(\mathcal{D}$

Prior is time-dependent

 $p[\pi(t)] = \operatorname{Dir} \left[\pi | \alpha(t)\right] = \frac{\Gamma\left[\sum \alpha(m, t)\right]}{\prod \Gamma\left[\alpha(m, t)\right]} \prod_{m=1}^{M} \tau$

MAP is a convex combination btw prior and MLE

 $\operatorname{MAP}\left[\pi(m)\right] = \left[\frac{\alpha_m(t)}{\sum_m \alpha_m(t)}\right] \left(\frac{\rho}{1+\rho}\right) + \left(\frac{1}{1+\rho}\right) \left|\frac{\sum_{t=1}^T r(m,t)}{N(t)}\right|$ $r(m,t) = \text{responsibility } \rho = \text{Percent towards equal weighting}$

Variational algorithm
includes EM as a
special case

Algorithm 2 deVI-MM Algorithm
1: input: $i_{1\times T}$, π_0 , $\alpha_{M\times 1}$
2: output: π
3:
4: ELBO ← []
5: $\pi_{M \times 1} = \pi_0$
6: for j=1:maxIters do
7: $Z_{M \times T} \leftarrow \exp (\mathbb{E}(\log \pi) + \log f(i))$
8: $Z \leftarrow Z/colSum(Z)$
9: $\pi \leftarrow rowSum(Z)$
10: $\pi \leftarrow \pi / \operatorname{sum}(\pi) + \alpha$
11: $ELBO[j] \leftarrow computeELBO(i,\pi)$
12: if $ELBO[j] - ELBO[j-1] < \tau$ then
13: break
14: end if
15: return π
16: end for

	•					
FSN EW -	-2.85	-3.22	-2.98	-3.00	-2.99	-3.13
FSN dynamic (prior=10%) -	-2.70	-3.15	-2.88	-2.86	-2.84	-3.01
FSN dynamic (prior=8%) -	-2.70	-3.15	-2.88	-2.85	-2.84	-3.01
FSN static (prior=10%) -	-2.68	-3.06	-2.85	-2.87	-2.82	-2.95
FSN static (prior=8%) -	-2.68	-3.06	-2.84	-2.87	-2.82	-2.95

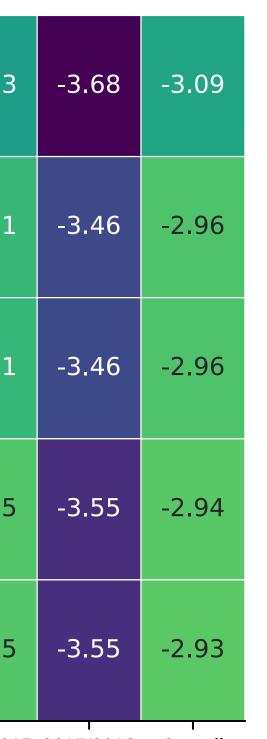
012/2013 2013/2014 2014/2015 2015/2016 2016/2017 2017/2018 Overal

r every epiweek, add a <u>hidden</u> <u>riable</u> that indicates which model generated the tth ILI value

$$P(\pi, Z) = \prod_{t=1}^{T} \prod_{m=1}^{M} \left[\pi(m) f(m, i_t) \right]^{z(m, t)}$$

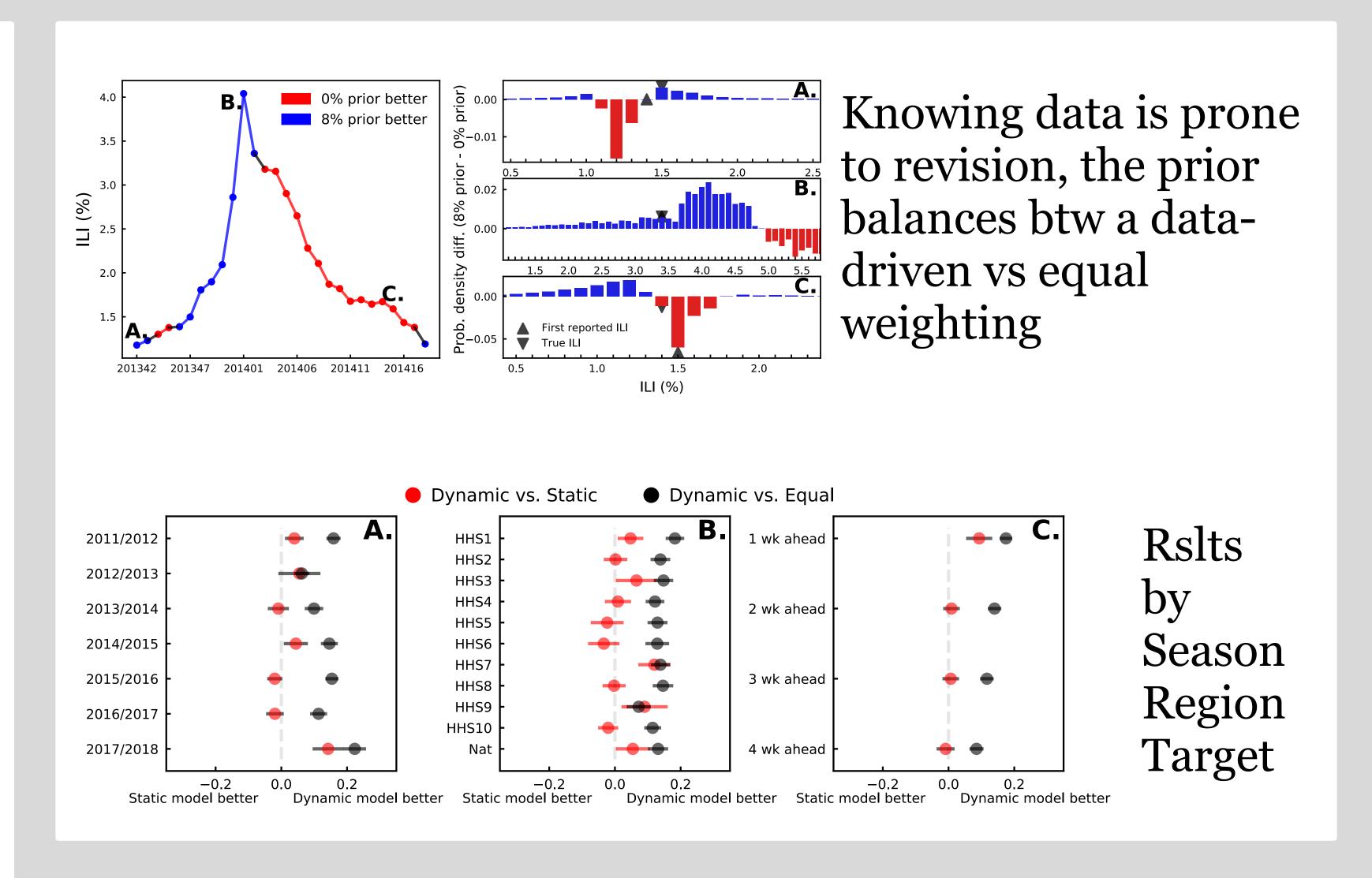
$$\pi(m)^{\alpha(m,t)-1}$$

$$a(t) = \frac{\rho N(t)}{M}$$



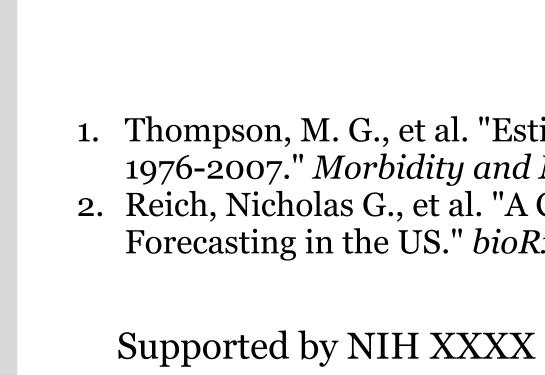
Adaptive ensemble outperforms Equal-weight

Adaptive ensemble performs similar to static



Our <u>adaptive ensemble</u> can forecast from revision-prone, noisy ILI data by relying on a prior. We show this adaptive algorithm outperforms an Equal-weight ensemble and shows similar, or better performance against a static ensemble.

Able to generate quick forecasts from sparse or noisy data, an adaptive ensemble could serve as a valuable tool to public health officials, needing to make informed decisions under uncertainty



Discussion

References

1. Thompson, M. G., et al. "Estimates of deaths associated with seasonal influenza-United States, 1976-2007." Morbidity and Mortality Weekly Report 59.33 (2010): 1057-1062. 2. Reich, Nicholas G., et al. "A Collaborative Multi-Model Ensemble for Real-Time Influenza Season Forecasting in the US." bioRxiv (2019): 566604.

Reich Lab UMassAmherst

email@university.edu