Structural and Functional Robustness in Networks

Junjian Qi, Stefan Pfenninger, Tom McAndrew, Cecilia Andreazzi, Ali Kharrazi, Jessica Santana, Claire Lagesse, Alireza Goudarzi

 $\rm SFI\ CSSS\ 2014$

July 3, 2014

ション ふゆ マ キャット マックシン

Introduction

- Robustness is the ability of networks to retain their functional and structural properties in the presence of variations.
- Three models:
 - 1. Sandpile model.
 - 2. Road network structure using graph and GIS measures.
 - 3. A simple model of social organizational networks.
- In each case, we study how the relevant measures change as the structure of the network and the behavior of its nodes varies.

うして ふゆう ふほう ふほう ふしつ

Controlling Self-organizing Dynamics of Sandpile Model

Junjian Qi, Stefan Pfenninger, Tom McAndrew, Cecilia Andreazzi, Ali Kharrazi

Uncontrolled Model

- add one sand to a randomly chosen node
- ► if the node does not exceed capacity, cascade stops
- if it exceeds capacity, it topples and cascade begins: h_i = 0 and h_j = h_j + 1 with a dissipation probability of ε

Controlled Model

- do not allow the over-capacity node to immediately topple
- it damages with ϵ_{dam}
- if it does not damage each of its sands dissipates with ϵ_{act}
- ► if no damage and no active dissipation, toppling

うして ふゆう ふほう ふほう ふしつ

size: number of toppling events n_{act} : number of sands lost from active dissipation n_{dam} : number of nodes damaged

Results

Probability Generating Function (no damage)

$$F(x) = 1 - (1 - \epsilon)\phi_{22}(1 - \epsilon_{act})^3 + (1 - \epsilon)\phi_{22}(1 - \epsilon_{act})^3 x [F(x)]^2$$

$$G(x) = 1 - \psi_2 + \psi_2(1 - (1 - \epsilon_{act})^3) + \psi_2(1 - \epsilon_{act})^3 x [F(x)]^3$$

Probability Distribution of Cascade Size

<ロト <四ト <注入 < モト

э

Results

 Cost

What if we don't know the parameters?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Applications

Cascading Debt Dependencies

Extinction Cascades

arrows \sim dependency size oval size \sim underlying asset value

loads estimated by metabolic rates on each trophic level

ション ふゆ マ キャット マックシン

Structural Robustness in Road Networks

Claire Lagesse, Alireza Goudarzi

 $\rm SFI\ CSSS\ 2014$

July 3, 2014

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Model Introduction to Road Network

◆□→ ◆□→ ◆注→ ◆注→ □注

Model

Geographical vs Topological Representations

Model Adjacency Matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 0 1 13 1 1 0 0 0 1

(日) (四) (王) (王) (王) (王)

Model Topological Distances Matrix

8 9 12 13 2 2 2 2 13 1 3 1

・ロト ・四ト ・ヨト ・ヨト

- 2

Model Indicators

Simplest Path

Shortest path

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

First Results

Network tolerance to failure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

First Results

Network tolerance to failure

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Further Work

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

$$structurality(r_{ref}) = \sum_{r \in G} d_{simple}(r, r_{ref}) \times length(r)$$

$$betweenness(r_{ref}) = \sum_{r_{ref} \neq r_1 \neq r_2} \frac{\sigma_{r_1 r_2}(r_{ref})}{\sigma_{r_1 r_2}}$$

Failure Tolerance in Social Organizational Networks

Jessica Santana, Alireza Goudarzi

SFI CSSS 2014

July 3, 2014

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivation

- ▶ Decision-making (Social) Agents
- ► Failure = Performance Shocks (Node Remains)
- ▶ Does failure tolerance vary with "relational cohesion?"

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

▶ How does this relationship affect the network?

Agent-Based Modeling of Failure Tolerance

- Dyadic Model
 - \blacktriangleright Performance Only (with Noise) \checkmark
 - Relational Cohesion Hebbian (Memory) Model
 - ▶ Frequency Bias ✓
 - Multiplexity Bias
- Network Interactions

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Model 1 (Performance Alone)

 $I_{AB_i} \propto Q_{B_i}$

Quality of Investee

Model 2 (Frequency Bias)

$I_{AB_i}(t+1) \propto I_{AB_i}(t) + R(t) - D$

<ロト <四ト <注入 < 三ト

ъ

Future Work

- We conducted a preliminary study of structural and functional robustness in networks.
- ▶ We considered there model systems:
 - 1. Cascading failure and self-organized criticality.
 - 2. Topological robustness of road networks.
 - 3. Robustness in social organizational networks.
- Our next step is to find complete each study and look for unifying themes in these models.

うして ふゆう ふほう ふほう ふしつ

Acknowledgements

- Juniper Lovato
- ▶ John Paul
- Sander Bais
- ► SFI faculty
- ▶ Thank you for making CSSS 2014 possible.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで